A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc.

نویسندگان

  • Miki Kawachi
  • Yoshihiro Kobae
  • Haruki Mori
  • Rie Tomioka
  • Youngsook Lee
  • Masayoshi Maeshima
چکیده

A mutant line of Arabidopsis thaliana that lacks a vacuolar membrane Zn(2+)/H(+) antiporter MTP1 is sensitive to zinc. We examined the physiological changes in this loss-of-function mutant under high-Zn conditions to gain an understanding of the mechanism of adaptation to Zn stress. When grown in excessive Zn and observed using energy-dispersive X-ray analysis, wild-type roots were found to accumulate Zn in vacuolar-like organelles but mutant roots did not. The Zn content of mutant roots, determined by chemical analysis, was one-third that of wild-type roots grown in high-Zn medium. Severe inhibition of root growth was observed in mtp1-1 seedlings in 500 muM ZnSO(4). Suppression of cell division and elongation by excessive Zn was reversible and the cells resumed growth in normal medium. In mutant roots, a marked formation of reactive oxygen species (ROS) appeared in the meristematic zone, where the MTP1 gene was highly expressed. Zn treatment enhanced the expression of several genes involved in Zn tolerance: namely, the plasma membrane Zn(2+)-export ATPase, HMA4, and plasma and vacuolar membrane proton pumps. CuZn-superoxide dismutases, involved in the detoxification of ROS, were also induced. The expression of plasma membrane Zn-uptake transporter, ZIP1, was suppressed. The up- or down-regulation of these genes might confer the resistance to Zn toxicity. These results indicate an essential role of MTP1 in detoxification of excessive Zn and provide novel information on the latent adaptation mechanism to Zn stress, which is hidden by MTP1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis.

Cation diffusion facilitator (CDF) proteins belong to a family of heavy metal efflux transporters that might play an essential role in homeostasis and tolerance to metal ions. We investigated the subcellular localization of Arabidopsis thaliana AtMTP1, a member of the CDF family, and its physiological role in the tolerance to Zn using MTP1-deficient mutant plants. AtMTP1 was immunochemically de...

متن کامل

Functional analysis of the rice vacuolar zinc transporter OsMTP1

Heavy metal homeostasis is maintained in plant cells by specialized transporters which compartmentalize or efflux metal ions, maintaining cytosolic concentrations within a narrow range. OsMTP1 is a member of the cation diffusion facilitator (CDF)/metal tolerance protein (MTP) family of metal cation transporters in Oryza sativa, which is closely related to Arabidopsis thaliana MTP1. Functional c...

متن کامل

Zinc-binding and structural properties of the histidine-rich loop of Arabidopsis thaliana vacuolar membrane zinc transporter MTP1☆

The vacuolar Zn(2+)/H(+) antiporter of Arabidopsis thaliana, AtMTP1, has a cytosolic histidine-rich loop (His-loop). We characterized the structures and Zn(2+)-binding properties of the His-loop and other domains. Circular dichroism analyses revealed that the His-loop partly consists of a polyproline type II structure and that its conformational change is induced by Zn(2+) as well as the C-term...

متن کامل

The Five AhMTP1 Zinc Transporters Undergo Different Evolutionary Fates towards Adaptive Evolution to Zinc Tolerance in Arabidopsis halleri

Gene duplication is a major mechanism facilitating adaptation to changing environments. From recent genomic analyses, the acquisition of zinc hypertolerance and hyperaccumulation characters discriminating Arabidopsis halleri from its zinc sensitive/non-accumulator closest relatives Arabidopsis lyrata and Arabidopsis thaliana was proposed to rely on duplication of genes controlling zinc transpor...

متن کامل

The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci.

The species Arabidopsis halleri, an emerging model for the study of heavy metal tolerance and accumulation in plants, has evolved a high level of constitutive zinc tolerance. Mapping of quantitative trait loci (QTL) was used to investigate the genetic architecture of zinc tolerance in this species. A first-generation backcross progeny of A. halleri ssp. halleri from a highly contaminated indust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 50 6  شماره 

صفحات  -

تاریخ انتشار 2009